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Abstract

We present an implementable feasible direction subgradient algorithm

for minimizing the maximum of a finite collection of functions subject to

constraints. It is assumed that each function involved in defining the

• objective function is the sum of a finite collection of basic convex func-

tions and that the number of different subgradient sets associated with

nondifferentiable points of each basic function is finite on any bounded

set. It is demonstrated that under certain conditions , including continuous

differentiability of the constraints and a regularity condition of the

feasible region, that the algorithm generates a feasible sequence which

converges to an c-optimal solution.

The results of some computational experiments are included .
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1. Introduction

In this paper , we develop an implementable feasible direction

algorithm for solving a class of nondifferentiable nonlinear programming

problems of the form :

(P) Mm F(x ) ,

x c C

where

F(x) max {f~ (x) ~~~~ f..(x) ; i = 1, . . . ,
f1~ finite, convex, not necessarily differentiable ,

C a  {x ~~R
n 

; 11(X)

H(x) a max {h~(x) ; 1 1 , . . . ,  KI,
h.(x) convex on R~

’.

Our present work is related to an earlier paper [1] where we presented

an algorithm for solving an unconstrained version of problem (P).

Our approach follows that of Dem ’yanov and ?lalozemov [51 who emp loy

subgradients to devise a descent algorithm for minimizing the maximum of

continuously differentiable convex functions , i.e., problem (P) with all f1

differentiable and C = R~ . For related literature on nondifferentiable

optimization methods , the surveys by 111ff u n  [ 13 , 141 are recommended .

He traces , e.g., the development of heuristic methods by Held and Karp [81

and Held , Wolfe and Crowder (91; the convergent methods of Polyak [15]

and Bertsekas and Hitter [4); and the conjugate-type methods of Lemarechal

(101 and Wolfe [171. Mifflin’s algorithm [131 for problems with “weakly

upper semismooth” functions (14] builds on the notion of generalized gradients

introduced by Clarke [2] for Lipschitz functions . While (P) is a special

case of that problem type, the algorithm developed here differs in that

• it is a feasible direction method.

1
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Much of the notation in this paper is similar to the notation in [1].

Denote n dimensional Euclidean space as fi t1 and HxH as the ~ -norm ofp p
x c R~ , where HxH is the £

2-norm . Given a poin t x c R~ , the Euclidean

ball about x of radius r) is N(x , q) ; when x = 0 and ‘~ 
= 1, B N(O , 1) is

the Euclidean uni t  ba l l .  For a function f defined on let 3f(x) be

the subgradient set of f at x and let f’(x, d) be the directional derivative

of f at x in the direction d. Given a set S c Ri’, Co~iv (S) is the convex

hull of S and Nr(S) is the element of minimum Euclidean norm in S. Also

denote 3f(S) a u {3f(x) ; x c SI.

For convenience , the functions f1 
in problem (P) are assumed to be

the sum of exactly~~ functions f.., where perhaps for some i , som e o f the

f1~ functions are identically zero on R . Clearly, both F and H are

continuous , finite , convex functions on Rn .

Given c �i 0 and p �~ 0, at any x c R
1
~ we def i ne

R (x , c) {i ci 1 , 2, . . . , m} ; f.(x) 
~~ 

F ( x )  —

and

Q(x , p) {i c{i , 2, .. .,  ; 0 ~ h.(x) ~ 
- p~~.

With these definitions , we can in terpr et f , i c R (x , c), as an “c-binding ”

objective function a~ x; and h1, i c Q(x , ii), as a “p—b inding ” con st ra in t

at x. When 11(x) ~ -p, 
we say that x is a ~~~~~~~~~ point and the

set of all x in R” where 11(x) < -p is the p-feasible set.

Given x £ R~’ and 1) � 0, we def ine

G
~~

(x
~ 

q) a tx~ u (y ; y c N(x , y ) ,  f.. not differentiable at y},

S~ (x , q)  a 
~~~ 

sf1. (G~
.(x , q) ) , i = 1 , 2 , . . . ,  m .

In addition , let

S’(x , c , fl) a u {S1
(x , q) ; i c R(x , cfl .

• To handle constraints , we use a procedure somewhat similar to tha t

• 
- -~~~~-• —~~--~-- • - •-

~~~
• 

~~
-• _ _



presented in [13]. At any x c Rr
~, we consider subgradients of p - binding

• constraints by defining S2(x , p) u{ah
~

(x) ; i c Q(x , p)} and letting

S(x , C , p, q) a Cony {S~ (x , c , q) u S2(x, p)}.

We note that for an unconstrained problem , S(x , ~~, q, p) = S~ (x , c, q)

is precisely the enlargement of the subgradient set considered in [i].

We assume the functions f.. are LFS (locally finitely subdifferentiable),

which means that in any closed bounded Euclidean ball , the number of different

subgradient sets of f.~ corresponding to the points of nondifferentiability ,

is finite. In [i], we cite several examples of LFS functions , including

examples from location theory and linear approximation problems .

Associated with S(x, c , p , r)), the function P measures the

proximity of S() to zero:

‘P(x, c, p, q) a mm (max ((g, d) ; d c S(x, c , p, r~)} ; g c B}.

It is easily established that

‘P(x , C , p , q) = - HNr(S(x, e, p, n ))lI~
We note that ‘P is well defined since S is a nonempty, compact , convex subset

of RtI . Further ‘P is always nonpositive. When ‘P(x , c , p, q) = 0 , we call

x a stationary point, and any x where ‘P(x, c , p, q) < 0 is a nonstationary

point. In the next section we consider properties of stationary and

nonstationary points .

2. Stationary and Nonstationary Points

In the unconstrained problem , information given by the value of ‘P is

• • relatively easy to exploit [1] since the set S(x, c , q) is derived solely

from the functions which are c-binding . In the constrained problem

this is no longer the case , since , to construct S(x, c, p, q), we also

consider the subgradient sets of the p-binding constraints . Consequently ,

stationarity in the constrained problem will not always imply a lower

3 ~~
~-
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bound on the minim um value of F on C , F*, as is the ca se w i th  the

unconstrained problem . In the presence of constraints , we show in the

next theorem that , while it may be possible to obtain a lowe r bound on

F*, it may well be the case that the only imp lica tion of stationarity is

• the emptiness of the interior of the p-feasible set.

Before proving this theorem , we assume that the minimum , F*, of F(x)

over C exists . In add ition , we assum e that there exists an upper bound ,

on the norm of any subgradien t of any func tion f.~ or h
~ 

at any poin t

in C.

• Theorem 2.1 Let x c C be a stationary point.

a) If H(x) < -p, then

F(x) > F~ > F(x)  - c - 2iqó . (2 . 1 )

b) If —p ~ 11(x) ~ 0, at least  one of the f o l l o w i n g  is t rue :

bI) (2.1) holds ,

b2) The i n t e r i o r  of the p — f e a s i b l e  set is e m p t y ,

b3) F(z )  �. F ( x )  — c — 2ifló , fo r  a l l  p - f e a s i b l e  z.

Proof: Stationari ty at x is equivalent to 0 c S(x, c , p, ii), wh ich can

occur if and only if there exists g1, ~~~~~• ‘  g~~, wher e

c {S 1(x , C , q) ~ S
2(x, p )}  and 0 c Coiiv (g 1, . . . , g ) .  Index  the

so tha t g.  c S1( x , c , q) fo r  1 ~ i ~ q 1 and g.  c S2 (x , p) fo r  q 1 + I ~~, i ~

Thus for  i , I ~ i ~ q 1, g.  c af ( . ) (Y 1)~ where f ( 1) (x)  � F ( x )  - c and

— 

~ 
q; and for i , q. + I ~ i ~ q, g1 c a h (~~) (x)~ where

• 0 > h(.)(x) ~ 
-p.

We note in the case where q1 
= q (which  c e r t a i n l y  holds  in case a ) ) ,

that  g .  c S 1 (x , c , q ) ,  I < i ~ q,  and thus by Theorem 3.2 of 1 1 1 , (2.1)

holds. Thus suppose q 1 < q ,  in which case 0 = q 1 or 0 < q 1 .



If 0 = q1, then g. c S
2(x, p) for all i. By the subgradient inequality ,

h (i) (z) � h~1~ (x ) + (g1, z-x) v z c R~~, and fur ther  h(1)(x) � -p and

11(z) ?~ h(.)(z). Thus

11(z) �~ h(~)
(z) �~ -p + (g1, z-x) v z c Rn .

Taking the convex combination over all i 1, . . . ,  q, yields 11(z) a
v z c Re’, and hence the p-feasible set has an empty interior , which

establishes case b2).

Consider the remaining case, 1 
~~. 

q1 < q. As in [ii, since each

function is Lipschitz,

F(z) �. F (x )  - c + (g1, z-x) - 2.~qô , v z c R~ , 1 ~, i ~ q1; and

thus for all z ë Rn ,

F(z)  � F(x)  - - 2~ qô + max{(g~, z-x) : i = 1, ..., q1}. (2 .2 )

For any p-feasible z, and i = q1 + 1, . . . ,  q,

1.1 ~ h~~~ (z) �~ h~ .~ (x ) + 
~~~ z-x) �~ -p + (g~ , z-x),

which implies (g~, z-x) ~ 0. Writing zero as a convex combination of

all g. leads to max ((g., z—x) : i = 1, . . .  , q1} � 0 for  all p—feas ib le  z.

Thus the final term of (2.2) may be deleted and case b3) is established .

Remark 2.1 The definition of q1 in the previous proof implies that if

a point g. is in both sets S1(x , c, r~) and S
2(x , p), it should be

considered as a point of S~ (x , c, q). This forces q1 to be equal to

• q if possible and thus to obtain the more useful cases (a) or (bl) in

which we have bounds on the constrained minimum of F.

• Rema rk 2.2  Cases (b i ) ,  (b2) ,  and (b 3) are not mutuall y exclusive . When

severa l different  convex combinations of elements in S 1(x , c , q) and

S2(x, p) are 0, (b I ) ,  (b2 ) ,  and (b3) can occur simultaneously.

To il lust rate the d i f f e ren t  situations described in Theorem 2.1 we

conside r the following examp le.

5 
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Example 2.1 Mm F(x), F(x)  l ix  - ( .5 , -~5 )il
subject to

h1 (x ) l x ii i - 1.6 < 0 ,

• h2(x) a l i x  — (1 , — 1)  i i — 1.6 < 0 ,

• Let c 0, q = x 10~~. It is clear that 6 = .j~ and x* = (.5, - .5)

is the optimal solution to this problem. For d i f ferent  values of p ,

stationarity may have distinct implications .

• (a) Let p = 0. The point y0 = (.6, -.4) is feasible , with H(y0)

= Max{- .6, -.6} = - .6 < -p. y0 
is also stationary because (.5, -.5)

is in N(y0, q). We observe that F(y0) = x 10~~, F(y0) 
- 2.~rpS

- .2588 and we obtain case (a) of Theorem 2.1 , that is ,

x 10
_ i 

> 0 = 1* = Min (F(z)  : z c CI > - .2588.

(b) Let p = 0.6. y
0 

remains stationary with 11(y
0
) = - .6 -p.

In this case , in addition to the lower bound on F*, [z c R2 : 11(z) < - . 6}

is empty , and both (bi) and (b2) are obtained. On the other hand ,

observe that y1 = (1, 0) is stationary since 11(y1) = h1(y 1) = h2(y 1)

= - .6  = -p so that both points (1, -1) c ah 1(y 1) and (-1 , 1) c 3h2(y1)

are in S(y1, c, p, q). However , the only conclusion is that the set

2
{z c R : H(z) < - .6)  is empty .

Now let p = 0.6 , and add a third constraint , h3(x) = - x1 
- x2 < 0,

to Example 2.1. Consider y
2 

= (.8, -.2). Since 11(y2) Maxj- .6, -.6, -.6) = - .6

= p, y2 is feasible. Moreover y2 is stationary . It is easy to verify that

S(y 2, c , p ,  rj) is the square with vertices (-1 , 1), (1, —1), (—1 , — 1), (1, 1).

Here the lower bound obtained is only valid on the p-feasible set , which is t~~~

line segment with end points y2 and (1 , 0 ) .  With F (y 2 ) = 3~~ x 10
k
, this

lower bound is positive and equal to .0242.  Hence , at y , .  both (b2) and

• (b3) hold.
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Remark 2.3 It is clear that case (b2) of Theorem 2.1 is relatively

undesirable since nothing can be said about the objective function itself.

To discard this case, a constraint qualification , similar to Slater’s

constraint qualification [12] is necessary . Thus, if the set

• (z ~ R
n : 11(z) < -p) is nonempty , case (b2) cannot occur .

Having dealt with stationary points in Theorem 2.1 , we now consider

nonstationary points. Given a nonstationary point x , the subgradient

sets in S(x , ~~, p , ii) relative to the functions ensure that we can

• find a descent direction, and the subgradient sets ah
~
, if any, ensure

that this descent direction is feasible.

Theorem 2.2 If P(x, c , p , q) < 0, there exists a feasible descent direction

for F at X.

Proof: Let g0 �0 be the element of minimum norm in S(x, c , p , q) ,  i . e . ,

0 > ‘P(x , c , p , n) = - li g 0H = - i i N r ( S ( x , c , p , n))H.
Define d0 -g0/ 1 1 g0 1 1 .  I f 11(x) = 0, then for any i such that

h
~

(x) = 11(x) 0, ah .(x) c S(x, c , p, ri) so that

h~ (x , d0) = max ((g, d0) ; g c

~ max{(g, d0), g C S(x, C , p , Ii))

= -min{(g, -d0), g c S(x, e , p ,  ii))

= —1 /~~g0~ J min{(g, g0) ,  g c S(x , c , p , r~)}

= 

~1180 11 < 0.

Hence, d0 is a feasible direction at x. On the other hand , if HOc) < 0,

the direction d is feasible since the functions h. are continuous .
0 1

In either case above, since &F(x) c S(x, c , p, r~) it follows from

Theorem 3.3 of [1] that F’(x, d0) < 0. Therefore d0 is a descent direction

• for F at x.

7 14
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3. The Algorithm

• The algorithm exploits the results of the previous section . We choose

positive values for the three parameters C , p , and q. Let x0 be a feasible

starting point, set k = 0 and go to Step 1.

Step 1

• At Xk , find F(xk) ,  R(x k , c) ,  and Q(x k, p). Calculate S(xk , C , p . q)

and ‘P(xk , C , p , ri). Go to Step 2.

Step 2

If ‘P(xk , C , p , q) = 0, stop ; xk is a stationary point .

If ‘P(x k ,  C , p , q) = 0 < 0, define as the element of minimum norm in

S(x , C , p, r~) and let dk = -8~/ii g~H. Perform a restricted line search
along dk , finding tk such that

F(x k + tkdk) = Min{F(xk + td k ) ; t > 0, H(x k + tdk) < 0}.

Update Xk 
-

~ 
Xk÷l = Xk + tkdk , k -

~ k + 1 and return to Step 1.

In the next section, under supplementary assumptions, we prove that

limit points of the algorithm are stationary points for problem (F).

4. Proof of Convergence

In this section we assume that the algorithm does not stop , but

generates an infinite sequence {xk} converging to some limit x~. The

proof that x.~ is stationary depends on the approximation of S(x* , c , p ,  q)

by S(xk , C , p, q). Although the S(xk , C , p , q ) ,  do not necessarily converge

to S(x*, g, p, r i ) ,  for sufficiently large k, S(x k , C , p, q) is contained

in S(x*, c , p , rj) plus an epsilon ball. In addition to the assumption

that the functions f. are LFS, two additional assumptions are required in

the proofs :

Assumption 4.1 There exists some x C C, a starting point for the

algorithm , such that the intersection , X, of C with the level set

8
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s R~ : F(x) ~ F(x )} is nonempty and bounded. By continuity of F and

H, X is also closed .

Assumption 4.2 The constraint functions, h1, i = 1, 2, ... K are
continuously differentiable as well as convex.

The first assumption guarantees a solution point x~ for (P) and

• insures that a limit point L.. exists . The assumption that the h
~ 

are

continuously differentiable is required for the stationarity proof,

especially Lemma 4.5.  In the next section we show by counterexample

that in the absence of this assumption convergence to a nonstationary

point is possible.

Lemma 4.1 For k sufficiently large ,

Q(x k , p) c Q(x.,., p).

Proof: Follows from Assumption 4.2.

We now show that S(xk, C , p, q) approximates the set S(x*, C , p. q).

In the proof of this result, we use Theorem 5.2 of [1].

Lemma 4.2 For any y > 0, there exists N1 such that

S(x k , C , p , q) c S(x.,., C , p, r~) + yB, k > N1.

Proof: By definition,

S(xk, C , p , q) = Cony (S’(Xk, C , q) u S2(xk, p)). (4.1)

Since S
~

(xk, C , r~) is identical to S(xk, C , ni) in [ 1 ] , by Theorem

5.2 of [1], there exists N~ such that

S1 (x k , C , ~~ 
c S

1(x~., C , r~) + yB , k > N~ . (4.2)

Now consider the sets S2() in (4.1). From Corollary 24.5.1

of [16], since the functions h. are assumed continuously differentiable ,

for each i C Q(x *, p), there exists L. such that

ah~
(x k ) c ah~ (x.~..) + yB , k > L

~
. (4.3)

It follows from the definition of S2(), (4.3) and Lemma 4.1 that there

exists such tha t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- • • • — —~~ • - •.•-••-— •

• 82 (x k , ~.i) c S2 (x* , p ) + yB , k > N I .  (4 .4)

Letting N1 = max (N~ , NI) and using (4.2), (4.3) and (4.4), the result

follows .

Corollary 4.3 If ‘P(x*, C , p, q) < - 2y < 0 , then ~V( x k , c, ci , q) < - y, k > N1.

Proof: See Corollary 5.3 of [1].

The following lemma is a partial converse of Lemma 4.2. It shows that

any subgradient of any binding function at x* can be approximated by an

element of SOck, C , p, r~) for large k.

Lemma 4.4 Choose any c~ > 0 and let s C a f~ (x~ ) ; i C R(x~ , 0). Then for

k larger than some N2 there exists s’ C S(xk, C , p, q) and t such that

s s ’ + t , H t i i <a.
Proof: The proof follows from the proof of Lemma 5.4 of [ii upon noting

that S ’ C S(x k, C , ri) c S(x k , C , ci , ‘1).

Lemma 4.5. For any k greater than the N
1 

of Corollary 4.3, there exists

some T > 0, independent of k, where with dk as chosen in Step 2 of the

algorithm ,

H(x k + t dk) 1 0, and

F(x k+l) ~ F(xk + t dk), for all t C [0, TI .

Proof: By Assumption 4.2, the h. are continuously differentiable on RZ1 and

thus from Remark 2 of [5, p. 270], for any i = 1, ..., k, there exists

T . ‘ 0 such that for all t c [0 , T . 1,
01 01

h1(x + td) h1(x) + t(Vh.(x), d) + a . ( x , d ; t ) ,  (4 .5)

where is a function with the property that a~ (x~ d ; t)/t ‘ 0

uniformly in x C X and d, i l d i l  = 1, as t -
~ 0. Because of the

uniform convergence of c7~(x , d ; t)/t, we can choose ~~~ 0 < T,’,~ ~ 
T0~ .

such that

t C [0, T~ .J implies ia~
(x , d ; t) I < y t/2, (4.6)



-
~~•

for all x c X and all d where H d H  = 1.

Letting T~ a min{T~~ ; 
i = 1 , . . . ,  K), it follows from (4.5) and

(4.6) that for any i = 1, . . . ,  K, any x c  X and any d , lidli = 1,

if t C [0, Tb], then

h.(x + td) 
~~ 

h~ (x) + t (Vh
~

(x ) ,  d) + y t/2 .  ( 4 . 7 )

• At a point xk, for any i = 1, ..., K, either i C Q(xk, p) or not.

If i 
~ 

Q(x k , i4, then with hi(xk) � 0 and choosing d = dk in (4.7),

h
~

(x + td k ) � t (
~

hi (x k ) ,  dk ) + y t/2 .  (4 .8)

Noting that Vh
~

(x k) c S(x k, C , p , q ) ,  with k > N1, and from

Corollary 4.3 that (
~~i

(xk) ,  
~~ 

I ~
P(X k ,  c , p , q) ~ -y, gives ,

from (4.8),

h
~

(xk + tdk) I -yt + yt/2 < 0. (4.9)

Consider any i ~ 
Q(x k, p). By uniform continuity of the functions

on the compact set C , there exists some T~ > 0 SUCh. that for all

x , y in C , l i x  - 
~~ I T~ implies

h.(x) - h.(y)I < p  for all i = 1, ..., K. (4.10)

For any i $ Q(xk, ci), hi(xk) < -p and so from (4.10), with

t C [0, T~],

h.(xk + tdk) I hi (xk) + p < -p + p = 0. (4.11)

Letting T = m m  
~
Tm~ 

T’~} > 0, from (4.9) and (4.11) and the definition

• 1  ofH ,

HOc k + tdk) 1 0 , t C [0, T].

• The second conclusion of the Lemma follows since Step 2 of the algorithm

determines X k+l where

F(x k+l) = min (F(xk + tdk) ; t � 0, H (x k + tdk
) 1 0)

• I mintF(xk + tdk) ; t C [0 , T f l .

11
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In the convergence proof . we make use of the following result from h
Cullum, Donath and Wolfe [3].

Lemma 4.6 Let F be convex on RtI and let the sequences {xk} and {dk} satisfy

~~~~~~ 
dk~~~

dA. , and F(xk+l)IF(xk +td k
) , O I t I T .  Then F’(x*, d*)~~~O.

We now prove the main result of this section that the limit point of any

• convergent sequence generated by the algorithm is a stationary point .

Theorem 4.7 ~P(x..., C , p, q) = 0.

• Proof: Suppose, to the contrary , that ~V(x ...., c, p, q) < -2y < 0. Since

dk 
-
~ d.,. ~ B there exists N3 such that

£ôIid k 
- d *Ii < ~~, k > N 3. (4 .12)  H

The directional derivative of F at x’.. is

F’ (x~., d.,.) = Max~(g, cL) ; g C aF (x...j } = ~~~~~ d..j,

• where Th.s. is a convex combination of elements s. and each s. C af.(x~)J J  3 3 1~~~’

for some i s R(x.~, 0). Choose a single N2 so large that Lemma 4.4 holds

for all such s. with a = ~~. Let k > Max{N1, N2, N3),  where N1 is from

Lemma 4.2. Employing Lemma 4.4,

F’ Cx ...., d...) ~~~~~~~ d...) + ~~~~~ d...)

= ~~~~~~~ dk) + (ZX.s ’.,  d* - dk) + (Lk~t~~ d.~.)

I (ZX~s~~ dk) ÷ (ZA.s~ ,d~. - dk
) ÷ I i~A~t~ ii d l i

I (~ X .s ’.,  dk ) + (~X.s ’., d* - dk) +

By definition of dk and from Corollary 4.3,

(ZX~ s,~, dk) I Max((g, dk
) ; g C S(x k, C~ )J , nfl

= ~‘(x~, C , p, q) I -y

Furthe r , I is~ H � ~ô and from (4 .12 ) ,

(Lk .s’., d... - dk) ~ I iLk.s~ H I id,~ 
- dk i 1 1 ~~~

.

Combining these results gives

F’(x..., d...) I < 0
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which contradicts Lemma 4.6 (with T as in Lemma 4.5). Therefore,

~‘(x , C , p, n) = 0.

When executed on a computer , the result of the difference F(x) -

appearing in the definition of R(x, c) is not very different from F(x)

if F(x) is a large number since in general C is small. Consequently,

R( x , s) might be reduced to R(x, 0) through roundoff error and
• this, in turn, could affect the convergence of the algorithm.

To avoid this numerical problem , redefine R(x, c), as is done in [1],

and use instead

R ’(x , c) = {i 1, 2 , . . . ,  m ; f
~
(x) > F(x) - c F(x)}.

It is also~necessary to assume F* > 0 and to modify the definition of

S1(x , C , n) given in Section 1. Then the results of Sections 2 and 4

hold with the exception that the inequalities (2.1) are modified to be

(1 - 

~)F (x) - 2.~ri6 < F* < F(x) .

5. Computational Results and a Non Convergent Example

In this section, numerical results are presented for several

constrained minisum location problems and a constrained minimax location

problem. To find the point of minimum norm in S(x, ~~, ci, q), Wolfe ’ s

algorithm [18] was used for minimax problems , and Gilbert ’s algorithm [6]

was used for minisum problems . The line search was done with quadratic

fits , but was modified so as to yield a feasible point at each iteration.

All the programs were written in FORTRAN and run on an IBM 370/165.

The constrained minisum problems are from [11]. Three new facilities

are to be located in the plane relative to five existing facilities.

There is a single linear constraint  on the location of the third new

facility , (x31, x32 ) ,  namely, x31 + - 3 1 0.
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The problem to solve is

Min F(X , X , X ) ~~~~
3 

£‘
~ w li x - A l l1 2 3 r 1  s 1  rs r S p

v l ix - x i ilIr<t�3 rt r t p

subject to:

x31 + x 32 
- 3 1 0,

where Xr (Xri~ Xr2) is the location of the r
th new facility ;

= (a 51, a~2) is the fixed location of the 5
th existing facility , and

Wrs and Vrt are known positive weights. Note that the function F is

the sum of (
~
. = 18) LFS functions and that the single constraint is

continuously differentiable.

From [ii], A1 = (2 , 3) ,  A2 = (4 , 2 ) ,  A3 = (5 , 4),  A4 = (3 , 5)

and A5 = (6 , 7), and the W rs and V rt data are as in Table 1. The problem

was solved with three different values for p (p = 1 , 1.78, and 2). In all

cases the starting point was X1 = X2 = = (0, 0) and p was 10~~. For

the problem with p = 1, n = 10~~, and for the problems with p = 1.78 and p = 2 ,

both q = 10~~ and q = 10~~ were used. A summary of the computational results

is given in Table 2, where the upper and lower bounds on F* are as given

in [11].

We remark that for the problems with n = 10~~ and p = 1.78 and p = 2 ,

termination occured when the maximum number of iterations allowed (150)

was reached , but progress was still possible. For the other problems , the

algorithm reached stationarity . The comparison with the results of [ii] is

rather difficult to make , since no numbers of iterations or computing

times are reported in that reference.

As a constrained minimax location problem , the Caribbean Islands

problem formulated in [iJ , was modified to include the four constraints

11 x 1 - A 1 i1 2 1 144 , l I x 1 - A4 11 2 
1 121 , Il K 2 - A 1 ii 2 1225 , and

I
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f ‘ :~
I lX~ — A2( 1

2 
1 144. The points A., i = 1 , 2, 3 and 4 represent the locations

of four of the Caribbean cities in the problem (A1 = (11.4, 11.6),

A2 = (35 .3 , 13.5), A3 = (8.80, 37.2), and A4 = (20.9, 30.6)).

Parameters were given values ~ = 5 x io 6
, n = l0~~ and p = 10~~. Starting

from (X 1, X2) = (x 11, x12, x21, x22) = (15, 22, 26, ii), the algorithm

terminated after 15 iterations and 3.03 seconds CPU time at the stationary

point (13.902 , 23.201, 24 .546 , 18.824) with a function value of 28.024.

The value of H at the stationary point was -1.07 x 10 14.

With a fifth constraint added , lI x 1 - x2i1 2 1 118, and starting
from ( 19 , 20, 24, 16) ,  the answer (14.585, 23.170, 24.488, 18.705) with

F = 28.158 and H = 0 was obtained in 24 iterations and 2.36 seconds of
CPU time.

• We now give an example which shows that if the constraints of problem

(P) are not continuously differentiable, the sequence generated by the

algorithm may converge to a nonstationary point. Consider the problem :

Mm 3 F(X) , F(X) a -2x2 ÷XsR

subject to

h1(X) 
a Max{3x1 + x2 - 2x3, - 3x 1 + x2 

- 2x3} 1 0

h2(X) x
3 

- 1 1 0

which has the optimal solution X* = (0, 2, 1) with F(X*) = -3. The functions

F(x) and h2(X) are continuously differentiable on R
3, but h1(X) is not.

In f act h 1(X) is LFS with possible subgradients sets of ~(3, 1 , — 2)),

~(—3, 1 , —2)) or Conv({(3, 1, —2), (-3, 1 , —2))). To simplify notation,

define J1 = Conv(t (0, -2, 1), (3 , 1, -2))), and 12 Conv(((0, -2, 1),

(—3, 1 , -2)1). It is easy to verify that Nr(~~) = (1 , -1 , 0) and Nr(ø~)

(-1, — 1 , 0). Since F is differentiable , set n = 0.

15
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Also it is clear that C = 0 is a legitimate choice . Further, let

ci = .5 and let X0 = (1, -3 , 0) be the starting point for the algorithm, where

F(X0) = 6.

Since h1 (X0) = Max{0, -6) = 0 and h2
(X0) = -1 , Q(X0, p) = {i},

and S(X0, e , p , ri) Thus the feasible descent direction given by

• the algorithm is -Nr(vI1) (-1, 1, 0). To find X1, minimize

F(X0 ÷ t(-1, 1 , 0)) -2t + 6, for t ~ 0 and (X0 + t(-1, 1 , 0)) feasible.

The minimum in the feasible set occurs for t = 3/2 which gives

= (—1/2 , -3/2, 0), F(x1) = 3.

At X1, 1i1(X
1) = Max{-3, 0), h2(X 1) -1 and S(X1, c, ci , q)

With -Nr~~~) = (1, 1, 0), minimize F(X 1 + t(1, 1, 0)) over t �~ 0 and

(X1 + t( 1 , 1, 0)) feasible, obtaining t 3/4 and X2 = (1/4 , -3/4 , 0)

with F(X2) = 3/2.

X,, yields S(X2, C , p, ~) and the minimization in the direction

-Nr (11) gives X3 (-1/8, -3/8, 0),  F(X3) 3/4. Continuing, it can be

shown , using inductive arguments , that for any k,

Xk = ((_1)k/2k , - 3/2’~ , 0) and F(X k ) = 312k-1

Consequently, the sequence (Xk} converges to IC.... = (0, 0, 0), while

F(Xk) 
-

~~ F(IL ) = 0. However, X~.. is not a stationary point. This can be

seen from the fact that h1(X...) = 0, h2(X....) = -1 , yielding Q(XJ , p) (1),

and S(X.,., C , p, n) = Conv({(0, —2 , 1), (3 , 1, 2), (—3, 1 , -2))),

where 0 $ S(IL , C , p, n). Further, -Nr(S(X..., c, p, q)) = (0, 1/2, 1/2)

which is a feasible descent direction for F at IC....
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r~’s~ 1 2 3 4 5 1 2 3

1 1 1 6 1 6 1 - 1 1

2 4  1 1 1 1 2 - - 1

3 1 1 1 1 1 3 — - —
W rs V t, r < t

Table 1: Weights for the Minisum Problem

p 1 1.78 2

10~~ 10~~ 10~~ ~~~ 10~~

Number of 63 90 150 134 150
ite rations

CPU time 6.62s 14.39s 14.72s 16.24s 13.77s

Lower bound on F* 90 70.25804 68.18406

Value obtained 90.00008 70.27462 70.28511 68.23939 68.28341

Upper bound 90 70.4299 68.64550
on F* •

Constraint -8.17x10 6 0 -1.23x10 5 0 0
value

Table 2. Numerical results for the constrained
minisum 1ocat~on problem .
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